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Phase-induced stability in a parametric dimer
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We report results on a model of two coupled oscillators that undergo periodic parametric modulations with
a phase differenc@. Being to a large extent analytically solvable, the model reveals agradpendence of the
regions of parametric resonance. In particular, the intuitive notion that antiphase modulations are less prone to
parametric resonance is confirmed for sufficiently large coupling and damping. Some general results concern-
ing synchronization properties in this system are presented. We also compare our results to a recently reported
mean-field model of collective parametric instability, showing that the two-oscillator model captures much of
the qualitative behavior of the infinite system.
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[. INTRODUCTION effects that are not specifically a consequence of the mean-
field analysis, and in this context to understand how a
Parametric resonance is a phenomenon pervading sevegupled system ofvery) few oscillators with short-ranged
fields of science. It occurs when the modulation of a systeninteractions might carry in it the seeds of the infinite/
parameter causes the system to become unstable. The litetgfinitely cross-coupled array. In particular, we seek the
ture on parametric resonance is enormous, so the best oﬁ@eds of the collective parametric instabilities. We do this by
can do is cite a range of different subjects where it may playtudying a model of two coupled oscillators. The control
a role. Examples include mechanical systems where sudp@rameter is the phase difference in the periodic modulation
resonances were first identifi¢d—5], elementary particles Of the frequencies of the two oscillators.
[6], guantum do’[$7], astrophysicig], fluid mechanicig], In Sec. Il we introduce the general model, while in Sec.
plasma physicg10], electronic networkg11], superconduct- Il we specialize to a particular model that admits a partially
ing and laser device§12], biomechanicg13], and even analytic solution. Section IV is a presentation of results as a
medicine[14]. Connections with chaotic systems have beercollection of stability boundary diagrams that convey the
suggested recentlyl5]. The simplest and perhaps most fa- Way in which stability boundaries shift, appear, and disap-
miliar example of parametric resonance occurs in a harmonig€ar with parameter changes. In Sec. V we analyze the ways
oscillator whose frequency varies periodically with time in which the seeds of the collective parametric instabilities
[1-5]. For certain ranges of modulation parametéire-  found in the mean-field model already appear in the two-
quency, amplitudethe oscillator is unstable while for others oscillator system. A brief summary of our conclusions is
it is stable. Even for this seemingly simple system the stabil'€iterated in Sec. VI.
ity boundary diagram is already quite rich and complese
below). Il. PARAMETRIC DIMER
A great deal of recent work has dealt with systems of ) i i
coupledoscillators—again, the literature in this general area OUr System consists of two linearly coupled parametric
is enormous. However, very little attention has focused orPScillators whose equations of motion are
systems of coupled parametric oscillatdrd6,17. Such

-, .
coupled arrays are particularly intriguing because each single X1= —wgl 1+ @1 (1) IXg —K(X1—X2) = X1,
oscillator alone exhibits regions of stable or unstable behav- ) . (1)
ior. Two questions arise naturallyl) How does coupling Xo=— 03[ 1+ ¢o(1) ]Xo— K(Xp—X1) — YXo.

modify the single-oscillator stability boundarie$2) Are
there collective parametric instabilities of the coupled systenHere wg is the natural frequency of eag¢hncoupledl oscil-
that are distinct from those experienced by single oscillatorstator, k is the coupling constant between them, ané the
In a recent paper Bena and Van den Brogt#] addressed damping coefficient. The parametric modulatiapgt) and
these questions for an infinite set of globally mean-field¢,(t) are periodic with period=27/w, and are identical
coupled harmonic oscillators subjected to time-periodicexcept for a phase differencé, that is, ¢,(t)=¢4(t
block pulses with quenched uniformly distributed random+ 6/w;). In the absence of the frequency modulation one is
phaseg*“quenched” in this context means that the phase ofleft with coupled ordinary damped harmonic oscillators
the frequency modulation of each oscillator is set at time whose total energy decays exponentially to zero. In the pres-
=0 and then remains unchangetlVithin their mean-field ence of the parametric modulation, however, energy is peri-
treatment they are able to deal with both of the questiongdically pumped into the system, which may or may not lead
posed above. In particular, they find wide ranges of paramto parametric resonance, i.e., to an infinite growth of the
eter values that lead to collective instabilities. amplitudes of the oscillators. Our goal is to determine the
Our interest in this paper is to identify generic coupling boundaries between these two behaviors, which will be re-
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ferred to as “unstable” and “stable.” We carry out the de- quencngz(w§+ 2k)*2, both with modulationg,(t). This
tailed plan for a particular modulation but obtain results thatgreatly simplifies the problem since the solutions to the

can be generalized beyond this specific case. single-oscillator problem are well knowd—5] (sometimes
The linearity of the equations allows one to make use oin full analytical detail for some choices of the function
Floquet theory to solve the problef]. Defining ¢1(1). In particular, the regions of instability of the dimer
system consist of the union of those of each of the single
X1 oscillators. This immediately allows some general observa-
5(1 tions: (1) Sincex in Eq. (6) correspond®xactlyto either of
X= , (2)  the single oscillators in Eq1) with k set to zero, it is clear
X2 that for any nonzerd, due to the addeg instabilities, the
X, dimer will become more unstable than an originally un-

coupled system(2) since each of the single oscillators in

one can rewrite Eqg1) in matrix form asX(t)=D(t)X(t)  Eds.(6) and(7) can become unstable, it is possible for the
with a matrixD satisfyingD (t)=D(t+T). Given a solution osmllator; in the dlmer to beconsynchronouslynstabldif
X(t), the time periodicity of the parametric modulations thusthe.ampl'IUde ok(t) dlverges but tha.‘t op(t) does_ not or
implies thatX(t+T) is also a solution. Therefore one can antisynchronousiynstabldif the amplitude of(1) diverges

) A but that ofx(t) does not
find a matrixF such that We now consider antiphase modulatiod@=(7) with

¢,(t)=— ¢41(t) (odd parity modulation This turns out to be
a very interesting case for a number of reasons presented in
and hence more generally through a repetition of this solughe. context of the specific system cho_sen_ below, buF it can be
tion sgld in g.eneral .that nel_thgr syn_chronlzatlon nor antlsy_nchro—
nization is possible. This is easily seen from the equations of
— A—2nyTEn motion, which do not admit the solutions=*x; in this
X(t+nT)=e FHDXO. @ case. In fact, this result can be further generalized to nonlin-
The long-time behavior of the system is thus clearly deter€ar Systems as well. Assume that a parametric dimer evolves
mined by the eigenvalue$\;} of the Floquet operator according to the equations of motiorx, ,=—[1
e 2"TF, which propagates the system in phase space for oné ¢1 5(t)]1Y (X1.2) — = (X1~ X21) — (X1 2), whereY charac-
period of the modulation. The eigenvalues obey the relatiofierizes each oscillatoE accounts for the coupling between
. the oscillators, and’ represents damping., =, andI’ can
[\ e be any odd functions(thus possibly nonlinearthe only re-
L Ai=e (5 striction being thaty’ is nonzero if its argument is nonzero.
Under these conditionévith ¢, and ¢, related as above
reflecting the incompressible flow in the absence of dampingone can easily verify thak,= *x;=x,(t) =x,(t)=0. On
The eigenvectorsp; of e TR satisfy |v,~(t+nT)| ph%smal fgrrt])unds this is a rgalso_nable result, since the an-
=|xi|"v;(t)], so in the limitn—ce parametric resonance ']E|p ase of t gparar;:et':nc mo urz]mon amou_lrlns to a permanent
oceurs if may|n[}>1. requency mismatch between the two oscillators.

X(t+T)=e 2TE(T)X(1) ©)

Explicit solution of the problem requires specification of
the modulation, and in the next section we choose a patrticu- Ill. SQUARE WAVE MODULATION
lar form that allows a partially analytic solution. However,
there are some general features of behavior that can be es- We concentrate on a square wave modulation of period
tablished independently of the particular modulation, as long =27/ w, and amplitudeA:
as it is periodic and the santexcept for a phase difference

for the two oscillators. These general features are particularly b1(t)=Asgrsin(wyt)],

interesting in the context of synchronization phenomena. ®
For in-phase modulationd=0), ¢»(t) = ¢,(t) and it be- _

comes possible to reduce the original four-dimensional prob- $2(t) =Asgrsin(w,t+6)].

lem to two two-dimensional systems. This decoupling is ac-

complished by changing the coordinate system to therhis choice is appealing because for any number of oscilla-
reference frame of the center of mass. Definkg(X:  tors(a single oscillator, or the coupled oscillators considered

+X7)/2 andp=(X;—X,), one obtains from Eq.1) here, or even the mean-field version of an infinitely cross-
. ) . coupled infinite chairj16]) the piecewise constant paramet-
X=—wg[ 1+ ¢1() X=X, (6)  ric modulation leads to a piecewise linear system whose
piecewise solution is known analytically. One can therefore
p=—{w[1+ ¢1(t)]+ 2k} p— yp. (7)  construct the Floquet operator explicitly by simply multiply-

ing togetherpiecewise linear Floquet operatarhis pro-
Each of these equations is precisely that sfregleparamet-  vides an immense reduction in computational effort by skip-
ric oscillator, one with frequency, and the other with fre- ping what is usually the most time-consuming task in
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obtaining the regions of parametric resonance, namely, the , w2+ wi+ /—(wf—w§)2+4k2
numerical evaluation of the Floquet operator itself. For an Pe= 5 ,

isolated oscillator this procedure is well knowh3,5. It is

worth noting that a simple rescaling of time to dimensionless 2, 2 2 2 ©)
", . . . wl-l—coz—\/(wzl—wzz) +4k

units,t’ =twg, shows that Eqg1) with this modulation are 2_ ,

governed by the dimensionless parameter combinations 2

=wolwy, A, klwj, vlwo, andg. Moreover, the behavior of ypere w3 =wi[1+ ¢, (t)]+k. Denoting the current state
the system is invariant with respect to the replacemerl of f the modulation by’ indicest and —, notice that while
by ¢'=2m— ¢ (reflection aroundr) since this justamounts p, . M,,, andP,_=P_, are always realM__ be-
to an exchange of indices between the oscillators. comes imaginary wheA>1 while P__ andM_,_=M__

For the sake of clarity, let us first analyze the frictionlesspecome imaginary whenA>1+ 2k/w§ and A>(1
casey=0. Each linear interval is characterized by one of the 2kl w2)*?, respectively. Whether the system periodically
four possible states of the modulationg(#;)=(+A,  alternates between harmonic behavior and one or more

+A), (+A,—A), (=A,+A), or (=A,—A). For each of saddle nodes will thus depend on the parameter region and
these states, the solutions are of the foxpit)=A{")e™"  the phase difference.

+A{Je PLyp(HeMiy B(-)e Mt where the eigenfre-  During a time intervalr with fixed ¢;,¢, we can relate
quencies® andM follow directly from the diagonalization of ~ x(t+ 7) to X(t) asX(t+ 7) =f(7)X(t), wheref is thepiece-
the matrixD associated with that state: wiselinear Floquet operator:
|
—mM;Cp+P1Ci —mM;Sp+ PiSm K[—Cp+Cpml K[ —sp+Sml
i 1 mP2s,—piM2s,  —myCp+piCm  K[P?s,—M?s;] k[ —Cp+Cp 10
t — L
P2—M?2 K[ —cptcml K[ —Sp+Sml —MyCp+PaCim —MySy+ PaSh

K[P?s,—M?s,]  k[—cptCpn]  MyP?s,—p,M2s;,  —m,Cptpacny

where we make use of the shorthand notatigrrcosPt),  determine the location of the parametric resonance bound-

s,=P'sin(Pt), c,=cosMt), s,=M~tsin(Mt), m; ,=M?  aries[5]:

—wiz, and p; = Pz—wiz. The Floquet operator is then

finally obtained as the product of piecewise Floquet opera- o T 0. T [02+0?
tors with arguments that depend on the phase difference be- co 2 co 2 | o o
tween the modulations: +0_
o T [0.T
A o T 6). T 6 X sin| - sin 5
Fm=i (o) (a7
yT
= tCOS?‘(7>, (12)

0
p ) . (17

X T 6\. T
Xf+_(§;)f++(§ 1

where 02 =w5(1=A)—y?4. This equation defines the
The stability properties of the coupled system are determinegoints at which one of the eigenvalues equals eithér or
by the magnitudes of the four eigenvalues ... \, of the  —1.In the absence of damping the solutions depend only on
Floquet operator. Note that, #=0 or 6=, the above ex- A and the ratior=w,/w,, and these particular results are
pression reduces to the product of only two matricas it  shown by the dashed curves in the first panel of Fig. 1. The
should sincef(0) is just the identity matrix. If damping is regions of instability appear as “tongues” starting from in-
present then the variablgs=e”?x; obey equations identi- te€ger and half-integer values o&t small modulation ampli-
cal to those of the undamped system but with the shffg tudes. Note that no abrupt transitiémor a visible transition

wa ,— ¥?l4. The inclusion of damping is thus a simple O.f any kind is seen at the “.né\:l .Wh'.Ch marks t'he tran-
' sition between an oscillating-oscillating behavior and a

matter. saddle-oscillating ong5]. As one would expect, on the other
hand, the system is nearly always unstable for sufficiently
IV. RESULTS small w, and sufficiently largeA (upper right corner of the
figure).
For a single parametric oscillator E¢p) involves only In contrast with the single oscillator, relatidb) for the

two eigenvalues and the product condition is sufficient tocoupled oscillators is not a sufficient condition to guarantee
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when k/a)g:0.0Z. Still in the undamped problem, when the
couplingk is large the two sets of tongues occur at different
parameter scales. The boundary diagram I(bdz)(2,=3 is
shown in the lower left panel of the figure. In either case,
since now we have two independent sets of instability re-
gions the effect of the couplinlg for /=0 has been t@n-
large the parametric resonance regime relative to that of two
uncoupled oscillators. As mentioned eatrlier, this is a general
result regardless of the form of the periodic modulation. The
details of the phase boundaries do of course depend on the
specific modulation function.

Damping, even in an isolated parametric oscillator, de-
stroys much of the intricate boundary structure and increases
the regions of stability. This is also the case for coupled
0 R oscillators, where increasing the damping tends to blur out

0 r 3 0 i 3 the effects of coupling. These behaviors can be seen in the

FIG. 1. Instability boundaries fog=0 in the ¢,A) plane.y  fight column of Fig. 1. The regions of instability are now
=0 in the first column whiley/w,=0.3 in the second column. restricted to larger amplitudeés Note the similarity between
k/w3=0.02 in the first row, whil/w2=3 in the second row. The these two figures, which involve different couplings but now
dashed line in the first panel is the result kar O (single uncoupled ~ With substantial dampingy/wy=0.3. Note also that in the
oscillatoy. The dark points in this panel are parameter pairs to bdower panel of this columr(large coupling the very first
considered in more detail subsequently. instability wedge is an’-instability region while the other

portions of the diagrartas well as the unstable regions in the
that the parametric resonance bifurcations occur when aipper weak-coupling casaclude bothr andr’ instabilities.
least one eigenvalue is;=*+1 [3-5]: for coupled oscilla- For #=0 these results allow us to say something about
tors the largest eigenvalue can cross the unit ci|m|¢=1 the interesting problem of asymptotic synchronization in
and hence enter a region of instabilijarametric resonange light of the general results already expressed in Sec. Il. In
in other directions in the complex plane. The fourth orderregions where the center of mass coordinaiteunstable but
characteristic polynomial must be solved numerically to dethe relative coordinatg is stable ¢-instability regions that
termine the instability boundaries; this is still a computation-do not overlap withr ’-instability regions the coupled oscil-
ally inexpensive procedure since we have an analytic expresators are synchronized i##0 (x;=x,), that is, the two

sion for the Floquet operator. oscillators move together about the origin with ever increas-
ing amplitude. Conversely, iX is stable butp is unstable
A. In-phase modulations (r’-instability regions that do not overlap withinstability

regions, with y#0 the oscillators become ‘“antisynchro-
nized” (x,;= —Xy), that is, the two oscillators oscillate with
ever increasing amplitude but in opposite directions, crossing
one another each time they pass through the origin. Antisyn-
chronization becomes more difficult to achieve with increas-
' [ 2101 ing coupling. If y=0 the strict equalitiex;=Xx, or x;=
wo= Vot 2k, —X, no longer hold in the nonoverlapping regions, but the
(13 difference betweenx; andx, or —X, is oscillatory and re-
mains bounded. A simultaneous instability of botland p
. . involves an unstable center of mass coordinate and un-
We can thus use the known results for' the smgle OSC'”""tobounded oscillations of each oscillator about this unbounded
[1,3,9, for which the closed expressio(l2) gives the mean, which in turn involves a more complicated phase re-

.bound.e}ries OT the instabilit.y regions _in the, ) plang. The lation between the motions of the two oscillators. We return
instability regions for the dimer are given by the union of the,[0 this issue later

sets of tongues arising from each independent oscillator, one
set emerging from integer and half-integer values rof

When 6=0, corresponding to in-phase modulation, each
of the two equation$6) and(7) is precisely that of a single
parametric oscillator, one with frequenay, and modulation
amplitudeA, the other with rescaled parameters

A'=A(wol w))?.

(* r-instability regions’), and the other from B. Out-of-phase modulations
) A wealth of very intricate results arises whé¥0. In
r(k)=r 1+2k/w2=ﬂ (14) contrast with theg=0 case, it is now no longer clear how to
N 0 wp break down the problem into simpler independent compo-

nents(even ford= ) and, in particular, there is no longer a
(“ r’-instability regions”). When the coupling between the transparent way to relate the results to those of single para-
oscillators is small the two sets of tongues almost overlapnetric oscillators. The only way to convey the intricacy of
and one obtains in the undamped case the solid curves in tiiee problem appears to be graphical, and so we present an
first panel of Fig. 1, which show the instability boundariesarray of results in the next few figures. Since there are sev-
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FIG. 2. (r,A) plane as in Fig. 1 fok/w3=0.12 and several FIG. 4. Stability regions in thek( 8) plane in the absenadgeft
combinations o andy (origin is at bottom left corner; tick marks column, y=0) or presencdright column, y/wy=0.05) of damp-
are separated by half a unit on each axis ing. Top panelsr=1.9 andA=0.9. Bottom panelsr =2.25 and
A=13.

eral parameters that sensitively affect the instability bound-
aries Comparisons within and among figures are required varies in the vertical direction Whll? varies in the horizon-
Perhaps the most Str|k|ng feature of taejependence is tal direction. Flgure 2 shows such a panel for a relath@ly
its sensitivity: the unstable regions in the,&) plane can small couplingk/w5=0.12. One notices that the depen-
change very abruptlyyet continuously with the phase dif- dence is smoothed out as damping increases, so that almost
ference. As one might expect, this sensitivity is stronglyno structure is visible along the rightmost columg/ o,
modulated by the coupling. This is clearly seen by com- =0. 3) Figure 3 shows the results for a larger coupling
paring one by one the corresponding panels in Figs. 2 and &/ »3=0.6. Note that the same tendency is observed: the in-
These figures show the instability regions in theA) plane  stability boundaries become gradually less sensitiveds y
for various parameter combinations, but with the couplingincreases. However, the rightmost column of Fig. 3 now
constant fixed within each figurgn order to save space, shows much more structure than that of Fig. 2, indicating
these and subsequent figures consistently omit labels, usiriat for the same value of the (r,A) plane with largerk
the same scale as Fig. 1 in the &) plane, with the origin at shows a strongef dependence.
the bottom left corner and tick marks separated by half a unit Figures 2 and 3 suggest thét 7 gives rise to particu-
on both axef Without dwelling on the details at this point, it larly stable behavior. This is in agreement with the intuitive
is clear that the corresponding panels for stronger couplingotion that antiphase modulations should be less prone to
present a more intricate boundary pattern. Figures 2 and Rsonance than in-phase ones. In order to verify this intu-
are tiled so as to exhibit most clearly the effects of dampingtion, a complementary view of these phenomena can be ob-
and of the modulation phase difference. In these renditfons tained by instead projecting the instability regions in the
(k,6) plane. This allows us to start with uncoupled oscilla-
Yy =0 Ylwg = 0.01 Ylwg = 0.07 Yoy =0.3 tors (k=0) and observe how a givedin)stability evolves as

T —— k and 6 change. Indeed, it turns out to be possible to under-

stand much of the behavior of the coupled system in terms of
the behavior of the uncoupled system. To produce the repre-
sentative results shown in Figs. 4 and 5, we fix severg)
points in the single-oscillator stability boundary diagram
shown as black circles in the first panel of Fig. 1 and study
the way in which variations i and @ affect these particular
states. Two of the points in Fig. 1r,A)=(0.8,1.8) and
(1.25,0.6), are stable states for the single oscillétue first
black dot touches the stability boundary in the figure only
because it has been drawn large enough to render it visible;
the point is well within the stable regi@nThe other two
points, ,A)=(1.9,0.9) and (2.25,1.3), lead to unstable be-
havior of the single oscillator.

The first thing to be noted in Fig. 4 is that the horizontal

FIG. 3. (,A) plane as in Fig. 1 fok/w3=0.6 and several axis has been rescaled in order to reveal the relevance of the
combinations of9 and y (origin is at bottom left corner; tick marks variabler’ [see Eq.(14)]. The top panels focus on=1.9
are separated by half a unit on each axis and A=0.9, which is in the parametrically resonant regime

Om=1

0/m=0.6

0.3

O/t =

=0

(37,4
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2 T 2 — =0.8 andA=1.8, this point lies in a narrow corridor be-
y ! | tween two instability regions in the (A) plane(see Fig. 1
One would therefore expect instabilities to arise more easily,
51 S () - and the immediate question is how the resulting diagram
| might reconcile the structures observed in Fig. 4 and the top
0y 0 panels of Fig. 5. The answer lies in a very rich structure in
0 — 0 e the (k,#) plane(bottom left panel initially, very small cou-
! vtk 4 ! 8 ¢ pling induces an instability for a#. The now predominantly
™ unstable system evolves in a manner similar to those of Fig.
_ » L 4, a stability region being created aroumd= 7 as k in-

—

creases, with stringlike gaps of instability around the usual
4 i values ofr'. The difference is that there is now also a second
band of stability centered arouni=0, presenting gaps at
o LU
0 r(k) 10 0 k) 10

o/n

the samer’ positions. Fork sufficiently large, those two
stability bands merge and one is left with a structure similar
to that of the top panels: a predominantly stable region per-

FIG. 5. Instability regions in thek| #) plane in the absendéeft  meated by strings of instability. The bottom right panel of
column, y=0) or presencéright column, y/w=0.05) of damp-  Fig. 5 shows the effect of damping, which significantly re-
ing. Top panelsr=1.25 andA=0.6. Bottom panelstr=0.8 and  duces the instability gaps, thus greatly simplifying the pic-
A=1.8. ture.

The notion that modulations operating with a phase dif-
for the uncoupled system. The smallportion of the figure  ferenced= 7 are less prone to parametric resonance is thus
thus represents an unstable regime. One notes thatfky  seen to be essentially correct. Framing this statement more
slightly above 2 the system becomes stable withthiater-  carefully, our results show that, for givenand A, suffi-
val centered aroundr. Increasingk a little further, this sta-  ciently large values ok/wcz, and y/w, are able to induce, in
bility region then evolves in a very complex pattern, whichthe (k,6) plane, a band of stability centered aroufie 7
includes reentrant “holes™ of instability. After a distinguish- even if the uncoupled oscillators are individually unstable.
able gap of instability, a somewhat simpler band of stabilityThe width of this band can eventually comprise the whole
arises around’ ~ 3.5 starting atd= 7. This band continues 2 interval if the uncoupled system is originally stable.
to larger values ok, with its outermost boundaries present-
ing a relatively Simpler envelope than the kN/\pattern. The V. COLLECTIVE PARAMETRIC INSTABILITY
interesting point to be emphasized is that the band is perfo-
rated by gaps of instability most of which are centered pre- Bena and Van den Broeckl6] studied the stability
cisely at integer and half-integer valuesrdf This result is boundaries ofN parametrically modulated oscillators}
perhaps anticipated by the fact that the frequengyappears each coupled to all the others by the same coupling constant
as the effective average diagonal frequency in the mean-fieldk/N (in our notation. The phase$6;} are initially chosen
equation of motion in Ref[16]. The gaps are eventually at random from a uniform distribution in the intery&, 27 ],
closed by increasing the dampiripp right panel, which ~ remaining quenched thereafter. With a square block modula-
also broadens the stability band and simplifies its depention the system is exactly solvable in the lif\lt- 2, where
dence on the phase difference. The bottom panels in Fig. the mean-field solution becomes exact. The mean-field equa-
are forr=2.25 andA=1.3, which again is in the resonant tion Is
regime of the single oscillator. One notices the same pattern: . )
for lower values ofk a complex shape emerges in tide X=— [ 1+ ¢4(t)]x— yx—2k(x—(x)), (15
dependence of the stable regions. For sufficiently large val-
ues ofk, a band of stability arises which has instability gapswherex is the displacement of any oscillator in the chain,
basically centered at integer and half-integer values’of  ¢,(t) is the periodic modulation with phase, and (x)
Damping(bottom right panelcauses gaps to disappear, cre-=N"'3N x; is the mean displacement to be determined
ating a uniform region of stability centered arouée . self-consistently. Bena and Van den Broeck note that the

Figure 5 presents what may be regarded as the opposit&act solution of this equation is
situation, namely, when the original uncoupled system is
stable. The top panels show the results ifer1.25 andA X(1) x(0)
=0.6. Notice that the behavior is much simpler in this case, ( : ) =Gyt ( . )
with the original stability being disturbed mostly around in- x(t) x(0)
teger and half-integer values of in the absence of damping ¢
(top left), with a relatively weakd dependence. The effect of +2KkGy(1) - f d7rGy(7)*- (
damping(top right is to suppress most of these instability 0
regions, yielding a predominantly stabl&, §) plane. The
bottom panels show results for an interesting intermediatd he propagato6(t) is known explicitly. Indeed, at=T it is
situation: even though the uncoupled system is stable for G(T)=e *"F(T) whereF is precisely the single-oscillator
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’ ’ ? ’ ’ ? FIG. 7. Trajectories for the two-oscillat@= 7 system for the

FIG. 6. Instability regions in ther(A) plane for y/wy=0.4.  parameters corresponding to the dark points in the upper right panel
According to the mean-field modgl6], the usual parametric reso- of Fig. 6: y/wo=0.4, A=3, and k/a)(z):zl_ r=0.25 in the upper
nance occurs inside the dotted boundaries, while the boundaries panel and 0.4 in the lower panel. The dashed curves are the dis-
collective instability are depicted by dashed linkkw3=4 for the  placementx, of one oscillator vs time, the dotted curves are the
top panels, anél/ w5= 20 for the bottom panels. The thin solid lines displacemenk, of the other oscillator, and the thick solid curves
correspond tdk=0 (left column); the thick solid lines(right col- represent the mean displacemant (X, + X,)/2.
umn) correspond tod= 7 in the two-oscillator model. The dark

points in the upper right panel are parameter pairs considered iHavior becomes primarily collective

more detail subsequently. We wish to explore whether our two-oscillator model is

able to capture at least some of the behavior of the infinite
Floguet operator with the frequencies appropriately shiftedystem. In particular, we would like to investigate whether
by the coupling constant. Note that thissisactlythe same as features of the collective instabilities of the mean-field model
the propagator associated with theariable of Eq(7) inthe  are apparent in a system of only two oscillators with a fixed
two-oscillator in-phase modulation problem, that is, therelative modulation phase. To make the comparison we also
propagator associated with a single oscillator of frequencyghow in Fig. 6 the stability boundary for a single uncoupled
w} - oscillator (thin solid lines in left columh and for two

Bena and Van den Broeck identify two sorts of instabili- coupled oscillators with relative modulation phage .

ties. One, which they call the “usual parametric resonance,” We make the following assertions: the two-oscillator sys-
arises from the divergence associated with eigenvalu€s of tem with any value of # captures features of the overlap
of magnitude greater than unity, that is, with the unboundedegion of “usual” and “collective” instabilities. Thepurely
growth of the first term in Eq(16), which in turn signals the “usual” regions are captured most accurately by the 0
unbounded growth of the amplitude of any typical oscillatorsystem, and theurely “collective” regime is best captured
in the chain. The stability boundaries associated with thidy the two-oscillator system witld= . It is therefore this
type of instability are given precisely by E¢L2) and are latter system that most fully capturésith unexpected de-
shown for the parameter choices indicated in the caption atil) the principal features of collective behavior of the mean-
the dotted curves in the top row panels of Fig. 6. In ourfield model, and does so with increasing accuracy as the
in-phase two-oscillator parlance these are exactly the boundoupling between oscillators increases. We support these as-
aries of the ‘t’-instability regions” defined in terms of the sertions, particularly the last one which is the one of most
shifted frequencyw [cf. Eq. (13)]. The “usual” regions interest to us, with the results shown in Figs. 6 and 7.
shrink in width and move toward lowerand largerA with Clearly, thed=0 system captures the full “usual” insta-
increasing couplingk, a behavior already exhibited in the bility regime exactly since, as already stated, the “usual”
context of the in-phase two-oscillator results of Fig. 1. In-instability is exactly the same as the " instability.” This
deed, this instability is beyond the scale of the figures in thédentity is not restricted to the square wave modulation but
large-coupling bottom row panels. The other type of insta-holds for any periodic modulation. However, the=0 sys-
bility, which they call a “collective instability,” is associ- tem does not capture the “collective” instability since the
ated with the divergence of the meéx) and hence of the *r-instability” condition is that associated with a single
second term in Eq.16). The collective instability boundaries parametric oscillator with the unshifted frequensy. Thus,
are shown as dashed curves in all panels of Fig. 6. Note thébr example, in the first panel of Fig. 6 the=0 instability
the two types of instability may occur simultaneously, asboundaries can be constructed from the combination of the
seen in the instability region overlap evident in the top rowdotted regimes and the thin solid linésompare with the
panels of the figure. We return to this point below. Note alsaright lower panel of Fig. }, whereas those of the mean-field
that with increasing coupling the system becomes increassystem include the same dotted regimes but now the very
ingly stable, as one might expect, and that the unstable badifferent dashed regions. The left lower panel shows an even
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greater difference between th&=0 two-oscillator model persist even aff= 7. As we noted earlier, in a two-oscillator
(whose ‘T -instability” boundaries are independentikdfand  system withé= 7 (and any odd parity periodic modulation
the mean-field modédlwhere the boundaries of the collective it is not possible to have either of these instabilities alone;
instability are sensitively dependent d¢. Two coupled our observations here illustrate this general conclusion for
parametric oscillators with relative modulation ph%eo the SpECifiC model. The interpretation of the mean-field re-
therefore do not capture the collective features of the mearfults in the language ofr“instabilities” and “r" instabili-
field model. ties” requires a more detalied analysis of that moded].

Our assertion that the two-oscillator system with any However, even with the results at hand it appears compelling
contains elements of the “usual” instabilities in the mean-that the ‘r’-instability” contributions persist into the mean-
field model is simply a restatement of our earlier observatiorfield limit, becoming the nonoverlapping “usual” instability
that “r’ instabilities” continue to appear even when one portion of the phase boundary portrait.
moves away fronp=0 and all the way t@= . The lower panel of Fig. 7 is for parameter values in the

Consider now the two coupled oscillators witk 7. The ~ Nonoverlapping “collective” regime. The mean indeed in-
stability boundaries are shown by the thick solid lines in thecreases essentially monotonically, and each oscillator oscil-
panels in the right column of Fig. 6. In the upper panel WeIate_s about this increasing mean. It is interesting tha_t the
observe that the first tongue approximates the region ofain feature of the “collective” instability, namely, an in-
“usual” mean-field instability (in the nonoverlapping re- creasing meanld|splacem_ent with individual oscillators oscil-
gime) and that the remainder captures the collective instabillating about this mean, is already clearly captured by the
ity boundary features surprisingly wéll8]. We particularly ~ two-oscillator model.
point to the excellent fit of the leftmost boundary of this
region. The agreement between the two models is even more VI. CONCLUSIONS
dramatic in the lower panel, which corresponds to stronger
couplingk. Again, the details are surprisingly well matched We have studied two coupled parametric oscillators each
and the leftmost boundary of the region is captured esserwith identical periodically modulated frequencies but with a
tially exactly. phase differenc® between these modulations. This is a sys-

To further support our analysis, and to gain a clearer untem intermediate between the well-known single parametric
derstanding of the difference between “usual” and “collec- oscillator and the recently studied mean-field model of infi-
tive” instabilities (which are both evidently already present nitely many mutually coupled oscillatof46]. Each of these
in our two-oscillator system although the notion of a collec-extreme cases exhibits rich and intricate boundaries between
tive effect is not obvious in such a small sysjemwe con-  stable and unstable behavior as the system parameters are
sider the motions that might characterize the instabilities. Irvaried, the main differences between the single oscillator and
the mean field system we conjecture that in the nonoverlapmean-field behavior being the occurrence of collective insta-
ping “usual” instability regime the mean is zerdx)=0, bilities in the latter that of course have no counterpart in the
but each oscillator oscillates about zero with ever increasindormer. Our principal motivation for this study has been to
amplitude. The motion in the nonoverlapping “collective” explore the seeds of collective behavior in a very small sys-
instability regime may involve an ever increasing mean withtem and to understand the role of modulation phase differ-
each oscillator oscillating about this moving mean with finiteences in this collective behavior. Although we have explic-
amplitude. This description is in accord with that of Benaitly explored a particularly simplésquare wavemodulation,
and Van den Broeckl6]. The overlap regions may involve our most important conclusions extend beyond this simple
both an increasing mean and oscillations of ever increasingase.
amplitude about the moving mean. We have not ascertained We found that a coupled system with in-phase modula-
these conjectures in the mean-field system, but present réens (#=0), although rich in its own right, does not mimic
sults for the two-oscillator system that support this descripthe collective behavior of the infinite system. It is neverthe-
tion. less an interesting system because it can exhibit synchronous

Figure 7 shows trajectories for the two-oscillaté=7  and antisynchronous behavior. Synchronous behavior in-
system at the two points marked on the upper right panel ofolves the two oscillators moving together about zéro
Fig. 6. The trajectories shown are those of each of the twanstabilities”). The instability boundaries for this motion are
oscillators as well as the mean trajectory. The upper panel iglentical to those of a single parametric oscillator of fre-
for parameter values in the unstable region thatasin the  quency wy and are independent of couplifg since the
“collective” regime as identified by Bena and Van den spring connecting the oscillators is never disturbed. Antisyn-
Broeck[16]. It is tempting to associate this with the nonover- chronous behavior involves the two oscillators moving about
lapping “usual” instability of the mean-field model, an as- zero but exactly in antiphase with one anotfier’ instabili-
sociation that requires some caution. The figure indicates thaies”). The stability boundaries for these motions are sensi-
not only does each oscillator and also the mean oscillatéve to k, and the system becomes more stable with increas-
about zero, but all the trajectorieisicluding the mean, ap- ing coupling. We noted that these latter instabilities are
pear to diverge. This behavior is that envisioned in our earexactly those identified as “usual” instabilities in the mean-
lier discussion of the9=0 two-oscillator system in the re- field model[16] and that they contribute to the instability
gime where ‘f instabilities” and “r’ instabilities” overlap, boundaries in our two-oscillator model for adynot just for
and is an indication that features of both kinds of instability §=0. We also showed that damping shrinks the instability
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regimes and smoothes the stability boundaries. two-oscillator model withd= 7. This statement is based on
We showed that a change thcan substantially modify the great similarity of the stability boundaries of the mean
the regions of parametric instability, and that these changefield and two-oscillator systems, especially with increasing
are strongly affected by the coupling between the oscillatorscoupling, and the specific features of the oscillator trajecto-
In general, increasing up to 7 provides greater stability but ries that typify the motions in each of these unstable regimes.
also leads to more intricate Stabl“ty boundaries. An ianeaSﬂ is perhaps Surprising that a two-oscillator model can cap-
in k and/ory also leads to increased stability. By projecting tyre so much of the mean-field collective behavior, and sug-

the instability regions onto thek(d) plane we were able to gests that collective resonance in the latter may be dominated
show (at least for the specific model considered het@t  py phases quenched around

m-centered bands of stability arise for sufficiently lakgend
v. We have thus identified all the trends of behavior in the

two-oscillator_ model_as (_eac_h of the parameters is va_ried. ACKNOWLEDGMENTS
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