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Phase-induced stability in a parametric dimer
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~Received 1 August 2000; revised manuscript received 20 October 2000; published 20 February 2001!

We report results on a model of two coupled oscillators that undergo periodic parametric modulations with
a phase differenceu. Being to a large extent analytically solvable, the model reveals a richu dependence of the
regions of parametric resonance. In particular, the intuitive notion that antiphase modulations are less prone to
parametric resonance is confirmed for sufficiently large coupling and damping. Some general results concern-
ing synchronization properties in this system are presented. We also compare our results to a recently reported
mean-field model of collective parametric instability, showing that the two-oscillator model captures much of
the qualitative behavior of the infinite system.
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I. INTRODUCTION

Parametric resonance is a phenomenon pervading se
fields of science. It occurs when the modulation of a syst
parameter causes the system to become unstable. The l
ture on parametric resonance is enormous, so the best
can do is cite a range of different subjects where it may p
a role. Examples include mechanical systems where s
resonances were first identified@1–5#, elementary particles
@6#, quantum dots@7#, astrophysics@8#, fluid mechanics@9#,
plasma physics@10#, electronic networks@11#, superconduct-
ing and laser devices@12#, biomechanics@13#, and even
medicine@14#. Connections with chaotic systems have be
suggested recently@15#. The simplest and perhaps most f
miliar example of parametric resonance occurs in a harmo
oscillator whose frequency varies periodically with tim
@1–5#. For certain ranges of modulation parameters~fre-
quency, amplitude! the oscillator is unstable while for other
it is stable. Even for this seemingly simple system the sta
ity boundary diagram is already quite rich and complex~see
below!.

A great deal of recent work has dealt with systems
coupledoscillators—again, the literature in this general ar
is enormous. However, very little attention has focused
systems of coupled parametric oscillators@16,17#. Such
coupled arrays are particularly intriguing because each si
oscillator alone exhibits regions of stable or unstable beh
ior. Two questions arise naturally:~1! How does coupling
modify the single-oscillator stability boundaries?~2! Are
there collective parametric instabilities of the coupled syst
that are distinct from those experienced by single oscillato
In a recent paper Bena and Van den Broeck@16# addressed
these questions for an infinite set of globally mean-fi
coupled harmonic oscillators subjected to time-perio
block pulses with quenched uniformly distributed rando
phases~‘‘quenched’’ in this context means that the phase
the frequency modulation of each oscillator is set at timt
50 and then remains unchanged!. Within their mean-field
treatment they are able to deal with both of the questi
posed above. In particular, they find wide ranges of para
eter values that lead to collective instabilities.

Our interest in this paper is to identify generic coupli
1063-651X/2001/63~3!/036605~9!/$15.00 63 0366
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effects that are not specifically a consequence of the me
field analysis, and in this context to understand how
coupled system of~very! few oscillators with short-ranged
interactions might carry in it the seeds of the infinit
infinitely cross-coupled array. In particular, we seek t
seeds of the collective parametric instabilities. We do this
studying a model of two coupled oscillators. The cont
parameter is the phase difference in the periodic modula
of the frequencies of the two oscillators.

In Sec. II we introduce the general model, while in Se
III we specialize to a particular model that admits a partia
analytic solution. Section IV is a presentation of results a
collection of stability boundary diagrams that convey t
way in which stability boundaries shift, appear, and disa
pear with parameter changes. In Sec. V we analyze the w
in which the seeds of the collective parametric instabilit
found in the mean-field model already appear in the tw
oscillator system. A brief summary of our conclusions
reiterated in Sec. VI.

II. PARAMETRIC DIMER

Our system consists of two linearly coupled parame
oscillators whose equations of motion are

ẍ152v0
2@11f1~ t !#x12k~x12x2!2g ẋ1 ,

~1!
ẍ252v0

2@11f2~ t !#x22k~x22x1!2g ẋ2.

Herev0 is the natural frequency of each~uncoupled! oscil-
lator, k is the coupling constant between them, andg is the
damping coefficient. The parametric modulationsf1(t) and
f2(t) are periodic with periodT[2p/vp and are identical
except for a phase differenceu, that is, f2(t)5f1(t
1u/vp). In the absence of the frequency modulation one
left with coupled ordinary damped harmonic oscillato
whose total energy decays exponentially to zero. In the p
ence of the parametric modulation, however, energy is p
odically pumped into the system, which may or may not le
to parametric resonance, i.e., to an infinite growth of
amplitudes of the oscillators. Our goal is to determine
boundaries between these two behaviors, which will be
©2001 The American Physical Society05-1
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MAURO COPELLI AND KATJA LINDENBERG PHYSICAL REVIEW E63 036605
ferred to as ‘‘unstable’’ and ‘‘stable.’’ We carry out the de
tailed plan for a particular modulation but obtain results t
can be generalized beyond this specific case.

The linearity of the equations allows one to make use
Floquet theory to solve the problem@4#. Defining

X[S x1

ẋ1

x2

ẋ2

D , ~2!

one can rewrite Eqs.~1! in matrix form asẊ(t)5D̂(t)X(t)
with a matrixD̂ satisfyingD̂(t)5D̂(t1T). Given a solution
X(t), the time periodicity of the parametric modulations th
implies thatX(t1T) is also a solution. Therefore one ca
find a matrixF̂ such that

X~ t1T!5e22gTF̂~T!X~ t ! ~3!

and hence more generally through a repetition of this so
tion

X~ t1nT!5e22ngTF̂n~T!X~ t !. ~4!

The long-time behavior of the system is thus clearly de
mined by the eigenvalues$l i% of the Floquet operator

e22gTF̂, which propagates the system in phase space for
period of the modulation. The eigenvalues obey the rela

)
i 51

4

l i5e22gT ~5!

reflecting the incompressible flow in the absence of damp
The eigenvectors v j of e22gTF̂ satisfy uv j (t1nT)u
5ul j unuv j (t)u, so in the limit n→` parametric resonanc
occurs if maxj$ulju%.1.

Explicit solution of the problem requires specification
the modulation, and in the next section we choose a part
lar form that allows a partially analytic solution. Howeve
there are some general features of behavior that can be
tablished independently of the particular modulation, as lo
as it is periodic and the same~except for a phase difference!
for the two oscillators. These general features are particul
interesting in the context of synchronization phenomena.

For in-phase modulation (u50), f2(t)5f1(t) and it be-
comes possible to reduce the original four-dimensional pr
lem to two two-dimensional systems. This decoupling is
complished by changing the coordinate system to
reference frame of the center of mass. Definingx[(x1
1x2)/2 andr[(x12x2), one obtains from Eq.~1!

ẍ52v0
2@11f1~ t !#x2g ẋ, ~6!

r̈52$v0
2@11f1~ t !#12k%r2gṙ. ~7!

Each of these equations is precisely that of asingleparamet-
ric oscillator, one with frequencyv0 and the other with fre-
03660
t

f

-

r-

ne
n

g.

u-

es-
g

ly

-
-
e

quencyv085(v0
212k)1/2, both with modulationf1(t). This

greatly simplifies the problem since the solutions to t
single-oscillator problem are well known@1–5# ~sometimes
in full analytical detail! for some choices of the function
f1(t). In particular, the regions of instability of the dime
system consist of the union of those of each of the sin
oscillators. This immediately allows some general obser
tions: ~1! Sincex in Eq. ~6! correspondsexactlyto either of
the single oscillators in Eq.~1! with k set to zero, it is clear
that for any nonzerok, due to the addedr instabilities, the
dimer will become more unstable than an originally u
coupled system;~2! since each of the single oscillators
Eqs. ~6! and ~7! can become unstable, it is possible for t
oscillators in the dimer to becomesynchronouslyunstable@if
the amplitude ofx(t) diverges but that ofr(t) does not# or
antisynchronouslyunstable@if the amplitude ofr(t) diverges
but that ofx(t) does not#.

We now consider antiphase modulation (u5p) with
f2(t)52f1(t) ~odd parity modulation!. This turns out to be
a very interesting case for a number of reasons presente
the context of the specific system chosen below, but it can
said in general that neither synchronization nor antisynch
nization is possible. This is easily seen from the equation
motion, which do not admit the solutionsx256x1 in this
case. In fact, this result can be further generalized to non
ear systems as well. Assume that a parametric dimer evo
according to the equations of motionẍ1,252@1
1f1,2(t)#Y(x1,2)2J(x1,22x2,1)2G( ẋ1,2), whereY charac-
terizes each oscillator,J accounts for the coupling betwee
the oscillators, andG represents damping.Y, J, andG can
be any odd functions~thus possibly nonlinear!, the only re-
striction being thatY is nonzero if its argument is nonzero
Under these conditions~with f1 and f2 related as above!
one can easily verify thatx256x1⇒x1(t)5x2(t)50. On
physical grounds this is a reasonable result, since the
tiphase of the parametric modulation amounts to a perma
frequency mismatch between the two oscillators.

III. SQUARE WAVE MODULATION

We concentrate on a square wave modulation of per
T52p/vp and amplitudeA:

f1~ t !5A sgn@sin~vpt !#,
~8!

f2~ t !5A sgn@sin~vpt1u!#.

This choice is appealing because for any number of osc
tors ~a single oscillator, or the coupled oscillators conside
here, or even the mean-field version of an infinitely cro
coupled infinite chain@16#! the piecewise constant parame
ric modulation leads to a piecewise linear system wh
piecewise solution is known analytically. One can therefo
construct the Floquet operator explicitly by simply multipl
ing togetherpiecewise linear Floquet operators. This pro-
vides an immense reduction in computational effort by sk
ping what is usually the most time-consuming task
5-2
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obtaining the regions of parametric resonance, namely,
numerical evaluation of the Floquet operator itself. For
isolated oscillator this procedure is well known@1,3,5#. It is
worth noting that a simple rescaling of time to dimensionle
units, t85tv0, shows that Eqs.~1! with this modulation are
governed by the dimensionless parameter combinationr
[v0 /vp , A, k/v0

2, g/v0, andu. Moreover, the behavior o
the system is invariant with respect to the replacement ou
by u8[2p2u ~reflection aroundp) since this just amounts
to an exchange of indices between the oscillators.

For the sake of clarity, let us first analyze the frictionle
caseg50. Each linear interval is characterized by one of t
four possible states of the modulations (f1 ,f2)5(1A,
1A), (1A,2A), (2A,1A), or (2A,2A). For each of
these states, the solutions are of the formXj (t)5Aj

(1)eiPt

1Aj
(2)e2 iPt1Bj

(1)eiMt1Bj
(2)e2 iMt , where the eigenfre-

quenciesP andM follow directly from the diagonalization o
the matrixD̂ associated with that state:
n
ra
b

ne

-

le

t
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P25
v1

21v2
21A~v1

22v2
2!214k2

2
,

~9!

M25
v1

21v2
22A~v1

22v2
2!214k2

2
,

wherev1,2
2 [v0

2@11f1,2(t)#1k. Denoting the current state
of the modulation by indices1 and 2, notice that while
P11 , M 11 , and P125P21 are always real,M 22 be-
comes imaginary whenA.1 while P22 and M 125M 21

become imaginary when A.112k/v0
2 and A.(1

12k/v0
2)1/2, respectively. Whether the system periodica

alternates between harmonic behavior and one or m
saddle nodes will thus depend on the parameter region
the phase differenceu.

During a time intervalt with fixed f1 ,f2 we can relate
X(t1t) to X(t) asX(t1t)5 f̂ (t)X(t), wheref̂ is thepiece-
wise linear Floquet operator:
f̂ ~ t !5
1

P22M2 S 2m1cp1p1cm 2m1sp1p1sm k@2cp1cm# k@2sp1sm#

m1P2sp2p1M2sm 2m1cp1p1cm k@P2sp2M2sm# k@2cp1cm#

k@2cp1cm# k@2sp1sm# 2m2cp1p2cm 2m2sp1p2sm

k@P2sp2M2sm# k@2cp1cm# m2P2sp2p2M2sm 2m2cp1p2cm

D , ~10!
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where we make use of the shorthand notationcp[cos(Pt),
sp[P21 sin(Pt), cm[cos(Mt), sm[M 21 sin(Mt), m1,2[M2

2v1,2
2 , and p1,2[P22v1,2

2 . The Floquet operator is the
finally obtained as the product of piecewise Floquet ope
tors with arguments that depend on the phase difference
tween the modulations:

F̂~T!5 f̂ 21S T

2

u

p D f̂ 22S T

2 F12
u

pG D
3 f̂ 12S T

2

u

p D f̂ 11S T

2 F12
u

pG D . ~11!

The stability properties of the coupled system are determi
by the magnitudes of the four eigenvaluesl1 , . . . ,l4 of the
Floquet operator. Note that, ifu50 or u5p, the above ex-
pression reduces to the product of only two matrices~as it
should! since f̂ (0) is just the identity matrix. If damping is
present then the variablesyi5egt/2xi obey equations identi
cal to those of the undamped system but with the shiftv1,2

2

→v1,2
2 2g2/4. The inclusion of damping is thus a simp

matter.

IV. RESULTS

For a single parametric oscillator Eq.~5! involves only
two eigenvalues and the product condition is sufficient
-
e-

d

o

determine the location of the parametric resonance bou
aries@5#:

cosS ṽ2T

2
D cosS ṽ1T

2
D 2S ṽ1

2 1ṽ2
2

2ṽ1ṽ2

D
3sinS ṽ2T

2
D sinS ṽ1T

2
D

56coshS gT

2 D , ~12!

where ṽ6
2 [v0

2(16A)2g2/4. This equation defines th
points at which one of the eigenvalues equals either11 or
21. In the absence of damping the solutions depend only
A and the ratior[v0 /vp , and these particular results a
shown by the dashed curves in the first panel of Fig. 1. T
regions of instability appear as ‘‘tongues’’ starting from i
teger and half-integer values ofr at small modulation ampli-
tudes. Note that no abrupt transition~nor a visible transition
of any kind! is seen at the lineA51 which marks the tran-
sition between an oscillating-oscillating behavior and
saddle-oscillating one@5#. As one would expect, on the othe
hand, the system is nearly always unstable for sufficien
small vp and sufficiently largeA ~upper right corner of the
figure!.

In contrast with the single oscillator, relation~5! for the
coupled oscillators is not a sufficient condition to guaran
5-3
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MAURO COPELLI AND KATJA LINDENBERG PHYSICAL REVIEW E63 036605
that the parametric resonance bifurcations occur when
least one eigenvalue isl j561 @3–5#: for coupled oscilla-
tors the largest eigenvalue can cross the unit circleul j u51
and hence enter a region of instability~parametric resonance!
in other directions in the complex plane. The fourth ord
characteristic polynomial must be solved numerically to
termine the instability boundaries; this is still a computatio
ally inexpensive procedure since we have an analytic exp
sion for the Floquet operator.

A. In-phase modulations

Whenu50, corresponding to in-phase modulation, ea
of the two equations~6! and ~7! is precisely that of a single
parametric oscillator, one with frequencyv0 and modulation
amplitudeA, the other with rescaled parameters

v08[Av0
212k,

~13!
A8[A~v0 /v08!2.

We can thus use the known results for the single oscilla
@1,3,5#, for which the closed expression~12! gives the
boundaries of the instability regions in the (r ,A) plane. The
instability regions for the dimer are given by the union of t
sets of tongues arising from each independent oscillator,
set emerging from integer and half-integer values or
~‘‘ r -instability regions’’!, and the other from

r 8~k![rA112k/v0
25

v08

vp
~14!

~‘‘ r 8-instability regions’’!. When the couplingk between the
oscillators is small the two sets of tongues almost over
and one obtains in the undamped case the solid curves in
first panel of Fig. 1, which show the instability boundari

FIG. 1. Instability boundaries foru50 in the (r ,A) plane.g
50 in the first column whileg/v050.3 in the second column
k/v0

250.02 in the first row, whilek/v0
253 in the second row. The

dashed line in the first panel is the result fork50 ~single uncoupled
oscillator!. The dark points in this panel are parameter pairs to
considered in more detail subsequently.
03660
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whenk/v0
250.02. Still in the undamped problem, when th

couplingk is large the two sets of tongues occur at differe
parameter scales. The boundary diagram fork/v0

253 is
shown in the lower left panel of the figure. In either cas
since now we have two independent sets of instability
gions the effect of the couplingk for u50 has been toen-
large the parametric resonance regime relative to that of t
uncoupled oscillators. As mentioned earlier, this is a gen
result regardless of the form of the periodic modulation. T
details of the phase boundaries do of course depend on
specific modulation function.

Damping, even in an isolated parametric oscillator, d
stroys much of the intricate boundary structure and increa
the regions of stability. This is also the case for coup
oscillators, where increasing the damping tends to blur
the effects of coupling. These behaviors can be seen in
right column of Fig. 1. The regions of instability are no
restricted to larger amplitudesA. Note the similarity between
these two figures, which involve different couplings but no
with substantial damping,g/v050.3. Note also that in the
lower panel of this column~large coupling! the very first
instability wedge is anr 8-instability region while the other
portions of the diagram~as well as the unstable regions in th
upper weak-coupling case! include bothr andr 8 instabilities.

For u50 these results allow us to say something ab
the interesting problem of asymptotic synchronization
light of the general results already expressed in Sec. II
regions where the center of mass coordinatex is unstable but
the relative coordinater is stable (r -instability regions that
do not overlap withr 8-instability regions! the coupled oscil-
lators are synchronized ifgÞ0 (x15x2), that is, the two
oscillators move together about the origin with ever incre
ing amplitude. Conversely, ifx is stable butr is unstable
(r 8-instability regions that do not overlap withr-instability
regions!, with gÞ0 the oscillators become ‘‘antisynchro
nized’’ (x152x2), that is, the two oscillators oscillate wit
ever increasing amplitude but in opposite directions, cross
one another each time they pass through the origin. Antis
chronization becomes more difficult to achieve with incre
ing coupling. If g50 the strict equalitiesx15x2 or x15
2x2 no longer hold in the nonoverlapping regions, but t
difference betweenx1 and x2 or 2x2 is oscillatory and re-
mains bounded. A simultaneous instability of bothx and r
involves an unstable center of mass coordinate and
bounded oscillations of each oscillator about this unboun
mean, which in turn involves a more complicated phase
lation between the motions of the two oscillators. We retu
to this issue later.

B. Out-of-phase modulations

A wealth of very intricate results arises whenuÞ0. In
contrast with theu50 case, it is now no longer clear how t
break down the problem into simpler independent com
nents~even foru5p) and, in particular, there is no longer
transparent way to relate the results to those of single p
metric oscillators. The only way to convey the intricacy
the problem appears to be graphical, and so we presen
array of results in the next few figures. Since there are s

e
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PHASE-INDUCED STABILITY IN A . . . PHYSICAL REVIEW E63 036605
eral parameters that sensitively affect the instability bou
aries, comparisons within and among figures are require

Perhaps the most striking feature of theu dependence is
its sensitivity: the unstable regions in the (r ,A) plane can
change very abruptly~yet continuously! with the phase dif-
ference. As one might expect, this sensitivity is stron
modulated by the couplingk. This is clearly seen by com
paring one by one the corresponding panels in Figs. 2 an
These figures show the instability regions in the (r ,A) plane
for various parameter combinations, but with the coupl
constant fixed within each figure@in order to save space
these and subsequent figures consistently omit labels, u
the same scale as Fig. 1 in the (r ,A) plane, with the origin at
the bottom left corner and tick marks separated by half a
on both axes#. Without dwelling on the details at this point,
is clear that the corresponding panels for stronger coup
present a more intricate boundary pattern. Figures 2 an
are tiled so as to exhibit most clearly the effects of damp
and of the modulation phase difference. In these renditionu

FIG. 2. (r ,A) plane as in Fig. 1 fork/v0
250.12 and severa

combinations ofu andg ~origin is at bottom left corner; tick marks
are separated by half a unit on each axis!.

FIG. 3. (r ,A) plane as in Fig. 1 fork/v0
250.6 and several

combinations ofu andg ~origin is at bottom left corner; tick marks
are separated by half a unit on each axis!.
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varies in the vertical direction whileg varies in the horizon-
tal direction. Figure 2 shows such a panel for a relativ
small couplingk/v0

250.12. One notices that theu depen-
dence is smoothed out as damping increases, so that al
no structure is visible along the rightmost column (g/v0
50.3). Figure 3 shows the results for a larger coupli
k/v0

250.6. Note that the same tendency is observed: the
stability boundaries become gradually less sensitive tou asg
increases. However, the rightmost column of Fig. 3 n
shows much more structure than that of Fig. 2, indicat
that for the same value ofg the (r ,A) plane with largerk
shows a strongeru dependence.

Figures 2 and 3 suggest thatu5p gives rise to particu-
larly stable behavior. This is in agreement with the intuiti
notion that antiphase modulations should be less pron
resonance than in-phase ones. In order to verify this in
ition, a complementary view of these phenomena can be
tained by instead projecting the instability regions in t
(k,u) plane. This allows us to start with uncoupled oscill
tors (k50) and observe how a given~in!stability evolves as
k andu change. Indeed, it turns out to be possible to und
stand much of the behavior of the coupled system in term
the behavior of the uncoupled system. To produce the re
sentative results shown in Figs. 4 and 5, we fix several (r ,A)
points in the single-oscillator stability boundary diagra
shown as black circles in the first panel of Fig. 1 and stu
the way in which variations ink andu affect these particular
states. Two of the points in Fig. 1, (r ,A)5(0.8,1.8) and
(1.25,0.6), are stable states for the single oscillator~the first
black dot touches the stability boundary in the figure on
because it has been drawn large enough to render it vis
the point is well within the stable region!. The other two
points, (r ,A)5(1.9,0.9) and (2.25,1.3), lead to unstable b
havior of the single oscillator.

The first thing to be noted in Fig. 4 is that the horizon
axis has been rescaled in order to reveal the relevance o
variable r 8 @see Eq.~14!#. The top panels focus onr 51.9
and A50.9, which is in the parametrically resonant regim

FIG. 4. Stability regions in the (k,u) plane in the absence~left
column, g50) or presence~right column,g/v050.05) of damp-
ing. Top panels:r 51.9 andA50.9. Bottom panels:r 52.25 and
A51.3.
5-5
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MAURO COPELLI AND KATJA LINDENBERG PHYSICAL REVIEW E63 036605
for the uncoupled system. The small-r 8 portion of the figure
thus represents an unstable regime. One notes that forr 8(k)
slightly above 2 the system becomes stable within au inter-
val centered aroundp. Increasingk a little further, this sta-
bility region then evolves in a very complex pattern, whi
includes reentrant ‘‘holes’’ of instability. After a distinguish
able gap of instability, a somewhat simpler band of stabi
arises aroundr 8;3.5 starting atu5p. This band continues
to larger values ofk, with its outermost boundaries presen
ing a relatively simpler envelope than the low-k pattern. The
interesting point to be emphasized is that the band is pe
rated by gaps of instability most of which are centered p
cisely at integer and half-integer values ofr 8. This result is
perhaps anticipated by the fact that the frequencyv08 appears
as the effective average diagonal frequency in the mean-
equation of motion in Ref.@16#. The gaps are eventuall
closed by increasing the damping~top right panel!, which
also broadens the stability band and simplifies its dep
dence on the phase difference. The bottom panels in Fi
are for r 52.25 andA51.3, which again is in the resonan
regime of the single oscillator. One notices the same patt
for lower values ofk a complex shape emerges in theu
dependence of the stable regions. For sufficiently large
ues ofk, a band of stability arises which has instability ga
basically centered at integer and half-integer values ofr 8.
Damping~bottom right panel! causes gaps to disappear, cr
ating a uniform region of stability centered aroundu5p.

Figure 5 presents what may be regarded as the opp
situation, namely, when the original uncoupled system
stable. The top panels show the results forr 51.25 andA
50.6. Notice that the behavior is much simpler in this ca
with the original stability being disturbed mostly around i
teger and half-integer values ofr 8 in the absence of dampin
~top left!, with a relatively weaku dependence. The effect o
damping~top right! is to suppress most of these instabili
regions, yielding a predominantly stable (k,u) plane. The
bottom panels show results for an interesting intermed
situation: even though the uncoupled system is stable fr

FIG. 5. Instability regions in the (k,u) plane in the absence~left
column, g50) or presence~right column,g/v050.05) of damp-
ing. Top panels:r 51.25 andA50.6. Bottom panels:r 50.8 and
A51.8.
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50.8 andA51.8, this point lies in a narrow corridor be
tween two instability regions in the (r ,A) plane~see Fig. 1!.
One would therefore expect instabilities to arise more eas
and the immediate question is how the resulting diagr
might reconcile the structures observed in Fig. 4 and the
panels of Fig. 5. The answer lies in a very rich structure
the (k,u) plane~bottom left panel!: initially, very small cou-
pling induces an instability for allu. The now predominantly
unstable system evolves in a manner similar to those of
4, a stability region being created aroundu5p as k in-
creases, with stringlike gaps of instability around the us
values ofr 8. The difference is that there is now also a seco
band of stability centered aroundu50, presenting gaps a
the samer 8 positions. Fork sufficiently large, those two
stability bands merge and one is left with a structure sim
to that of the top panels: a predominantly stable region p
meated by strings of instability. The bottom right panel
Fig. 5 shows the effect of damping, which significantly r
duces the instability gaps, thus greatly simplifying the p
ture.

The notion that modulations operating with a phase d
ferenceu5p are less prone to parametric resonance is t
seen to be essentially correct. Framing this statement m
carefully, our results show that, for givenr and A, suffi-
ciently large values ofk/v0

2 andg/v0 are able to induce, in
the (k,u) plane, a band of stability centered aroundu5p
even if the uncoupled oscillators are individually unstab
The width of this band can eventually comprise the wh
2p interval if the uncoupled system is originally stable.

V. COLLECTIVE PARAMETRIC INSTABILITY

Bena and Van den Broeck@16# studied the stability
boundaries ofN parametrically modulated oscillators$xi%
each coupled to all the others by the same coupling cons
2k/N ~in our notation!. The phases$u i% are initially chosen
at random from a uniform distribution in the interval@0,2p#,
remaining quenched thereafter. With a square block mod
tion the system is exactly solvable in the limitN→`, where
the mean-field solution becomes exact. The mean-field eq
tion is

ẍ52v0
2@11fu~ t !#x2g ẋ22k~x2^x&!, ~15!

wherex is the displacement of any oscillator in the cha
fu(t) is the periodic modulation with phaseu, and ^x&
[N21( i 51

N xi is the mean displacement to be determin
self-consistently. Bena and Van den Broeck note that
exact solution of this equation is

S x~ t !

ẋ~ t !
D 5Gu~ t !•S x~0!

ẋ~0!
D

12kGu~ t !•E
0

t

dtGu~t!21
•S 0

^x~t!&
D . ~16!

The propagatorG(t) is known explicitly. Indeed, att5T it is
G(T)5e2gTF̂(T) whereF̂ is precisely the single-oscillato
5-6



te

he
nc

ili-
e,
f
e

to
h

u
n

e
In
th
ta

s
th
a
ow
ls
a
b

is
ite
er

del
ed
lso

ed

s-
p

n-
the
as-

ost

-
l’’

but

e
le

the

ld
ery
ven

-
es

s

d

anel

dis-
he
s

PHASE-INDUCED STABILITY IN A . . . PHYSICAL REVIEW E63 036605
Floquet operator with the frequencies appropriately shif
by the coupling constant. Note that this isexactlythe same as
the propagator associated with ther variable of Eq.~7! in the
two-oscillator in-phase modulation problem, that is, t
propagator associated with a single oscillator of freque
v08 .

Bena and Van den Broeck identify two sorts of instab
ties. One, which they call the ‘‘usual parametric resonanc
arises from the divergence associated with eigenvalues oG
of magnitude greater than unity, that is, with the unbound
growth of the first term in Eq.~16!, which in turn signals the
unbounded growth of the amplitude of any typical oscilla
in the chain. The stability boundaries associated with t
type of instability are given precisely by Eq.~12! and are
shown for the parameter choices indicated in the caption
the dotted curves in the top row panels of Fig. 6. In o
in-phase two-oscillator parlance these are exactly the bou
aries of the ‘‘r 8-instability regions’’ defined in terms of the
shifted frequencyv08 @cf. Eq. ~13!#. The ‘‘usual’’ regions
shrink in width and move toward lowerr and largerA with
increasing couplingk, a behavior already exhibited in th
context of the in-phase two-oscillator results of Fig. 1.
deed, this instability is beyond the scale of the figures in
large-coupling bottom row panels. The other type of ins
bility, which they call a ‘‘collective instability,’’ is associ-
ated with the divergence of the mean^x& and hence of the
second term in Eq.~16!. The collective instability boundarie
are shown as dashed curves in all panels of Fig. 6. Note
the two types of instability may occur simultaneously,
seen in the instability region overlap evident in the top r
panels of the figure. We return to this point below. Note a
that with increasing coupling the system becomes incre
ingly stable, as one might expect, and that the unstable

FIG. 6. Instability regions in the (r ,A) plane for g/v050.4.
According to the mean-field model@16#, the usual parametric reso
nance occurs inside the dotted boundaries, while the boundari
collective instability are depicted by dashed lines.k/v0

254 for the
top panels, andk/v0

2520 for the bottom panels. The thin solid line
correspond tok50 ~left column!; the thick solid lines~right col-
umn! correspond tou5p in the two-oscillator model. The dark
points in the upper right panel are parameter pairs considere
more detail subsequently.
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havior becomes primarily collective.
We wish to explore whether our two-oscillator model

able to capture at least some of the behavior of the infin
system. In particular, we would like to investigate wheth
features of the collective instabilities of the mean-field mo
are apparent in a system of only two oscillators with a fix
relative modulation phase. To make the comparison we a
show in Fig. 6 the stability boundary for a single uncoupl
oscillator ~thin solid lines in left column! and for two
coupled oscillators with relative modulation phaseu5p.

We make the following assertions: the two-oscillator sy
tem with any value of u captures features of the overla
region of ‘‘usual’’ and ‘‘collective’’ instabilities. Thepurely
‘‘usual’’ regions are captured most accurately by theu50
system, and thepurely ‘‘collective’’ regime is best captured
by the two-oscillator system withu5p. It is therefore this
latter system that most fully captures~with unexpected de-
tail! the principal features of collective behavior of the mea
field model, and does so with increasing accuracy as
coupling between oscillators increases. We support these
sertions, particularly the last one which is the one of m
interest to us, with the results shown in Figs. 6 and 7.

Clearly, theu50 system captures the full ‘‘usual’’ insta
bility regime exactly since, as already stated, the ‘‘usua
instability is exactly the same as the ‘‘r 8 instability.’’ This
identity is not restricted to the square wave modulation
holds for any periodic modulation. However, theu50 sys-
tem does not capture the ‘‘collective’’ instability since th
‘‘ r -instability’’ condition is that associated with a sing
parametric oscillator with the unshifted frequencyv0. Thus,
for example, in the first panel of Fig. 6 theu50 instability
boundaries can be constructed from the combination of
dotted regimes and the thin solid lines~compare with the
right lower panel of Fig. 1!, whereas those of the mean-fie
system include the same dotted regimes but now the v
different dashed regions. The left lower panel shows an e

of

in

FIG. 7. Trajectories for the two-oscillatoru5p system for the
parameters corresponding to the dark points in the upper right p
of Fig. 6: g/v050.4, A53, andk/v0

254. r 50.25 in the upper
panel and 0.4 in the lower panel. The dashed curves are the
placementx1 of one oscillator vs time, the dotted curves are t
displacementx2 of the other oscillator, and the thick solid curve
represent the mean displacementx5(x11x2)/2.
5-7
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greater difference between theu50 two-oscillator model
~whose ‘‘r -instability’’ boundaries are independent ofk) and
the mean-field model~where the boundaries of the collectiv
instability are sensitively dependent onk). Two coupled
parametric oscillators with relative modulation phaseu50
therefore do not capture the collective features of the me
field model.

Our assertion that the two-oscillator system with anyu
contains elements of the ‘‘usual’’ instabilities in the mea
field model is simply a restatement of our earlier observat
that ‘‘r 8 instabilities’’ continue to appear even when o
moves away fromu50 and all the way tou5p.

Consider now the two coupled oscillators withu5p. The
stability boundaries are shown by the thick solid lines in
panels in the right column of Fig. 6. In the upper panel
observe that the first tongue approximates the region
‘‘usual’’ mean-field instability ~in the nonoverlapping re
gime! and that the remainder captures the collective insta
ity boundary features surprisingly well@18#. We particularly
point to the excellent fit of the leftmost boundary of th
region. The agreement between the two models is even m
dramatic in the lower panel, which corresponds to stron
couplingk. Again, the details are surprisingly well matche
and the leftmost boundary of the region is captured ess
tially exactly.

To further support our analysis, and to gain a clearer
derstanding of the difference between ‘‘usual’’ and ‘‘colle
tive’’ instabilities ~which are both evidently already prese
in our two-oscillator system although the notion of a colle
tive effect is not obvious in such a small system!, we con-
sider the motions that might characterize the instabilities
the mean field system we conjecture that in the nonover
ping ‘‘usual’’ instability regime the mean is zero,^x&50,
but each oscillator oscillates about zero with ever increas
amplitude. The motion in the nonoverlapping ‘‘collective
instability regime may involve an ever increasing mean w
each oscillator oscillating about this moving mean with fin
amplitude. This description is in accord with that of Be
and Van den Broeck@16#. The overlap regions may involv
both an increasing mean and oscillations of ever increa
amplitude about the moving mean. We have not ascerta
these conjectures in the mean-field system, but presen
sults for the two-oscillator system that support this desc
tion.

Figure 7 shows trajectories for the two-oscillatoru5p
system at the two points marked on the upper right pane
Fig. 6. The trajectories shown are those of each of the
oscillators as well as the mean trajectory. The upper pan
for parameter values in the unstable region that isnot in the
‘‘collective’’ regime as identified by Bena and Van de
Broeck@16#. It is tempting to associate this with the nonove
lapping ‘‘usual’’ instability of the mean-field model, an a
sociation that requires some caution. The figure indicates
not only does each oscillator and also the mean oscil
about zero, but all the trajectories,including the mean, ap-
pear to diverge. This behavior is that envisioned in our e
lier discussion of theu50 two-oscillator system in the re
gime where ‘‘r instabilities’’ and ‘‘r 8 instabilities’’ overlap,
and is an indication that features of both kinds of instabi
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persist even atu5p. As we noted earlier, in a two-oscillato
system withu5p ~and any odd parity periodic modulation!
it is not possible to have either of these instabilities alo
our observations here illustrate this general conclusion
the specific model. The interpretation of the mean-field
sults in the language of ‘‘r instabilities’’ and ‘‘r 8 instabili-
ties’’ requires a more detalied analysis of that model@19#.
However, even with the results at hand it appears compel
that the ‘‘r 8-instability’’ contributions persist into the mean
field limit, becoming the nonoverlapping ‘‘usual’’ instability
portion of the phase boundary portrait.

The lower panel of Fig. 7 is for parameter values in t
nonoverlapping ‘‘collective’’ regime. The mean indeed i
creases essentially monotonically, and each oscillator os
lates about this increasing mean. It is interesting that
main feature of the ‘‘collective’’ instability, namely, an in
creasing mean displacement with individual oscillators os
lating about this mean, is already clearly captured by
two-oscillator model.

VI. CONCLUSIONS

We have studied two coupled parametric oscillators e
with identical periodically modulated frequencies but with
phase differenceu between these modulations. This is a sy
tem intermediate between the well-known single parame
oscillator and the recently studied mean-field model of in
nitely many mutually coupled oscillators@16#. Each of these
extreme cases exhibits rich and intricate boundaries betw
stable and unstable behavior as the system parameter
varied, the main differences between the single oscillator
mean-field behavior being the occurrence of collective ins
bilities in the latter that of course have no counterpart in
former. Our principal motivation for this study has been
explore the seeds of collective behavior in a very small s
tem and to understand the role of modulation phase dif
ences in this collective behavior. Although we have expl
itly explored a particularly simple~square wave! modulation,
our most important conclusions extend beyond this sim
case.

We found that a coupled system with in-phase modu
tions (u50), although rich in its own right, does not mimi
the collective behavior of the infinite system. It is neverth
less an interesting system because it can exhibit synchro
and antisynchronous behavior. Synchronous behavior
volves the two oscillators moving together about zero~‘‘ r
instabilities’’!. The instability boundaries for this motion ar
identical to those of a single parametric oscillator of fr
quency v0 and are independent of couplingk since the
spring connecting the oscillators is never disturbed. Antis
chronous behavior involves the two oscillators moving ab
zero but exactly in antiphase with one another~‘‘ r 8 instabili-
ties’’!. The stability boundaries for these motions are sen
tive to k, and the system becomes more stable with incre
ing coupling. We noted that these latter instabilities a
exactly those identified as ‘‘usual’’ instabilities in the mea
field model @16# and that they contribute to the instabilit
boundaries in our two-oscillator model for anyu, not just for
u50. We also showed that damping shrinks the instabi
5-8
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regimes and smoothes the stability boundaries.
We showed that a change inu can substantially modify

the regions of parametric instability, and that these chan
are strongly affected by the coupling between the oscillat
In general, increasingu up top provides greater stability bu
also leads to more intricate stability boundaries. An incre
in k and/org also leads to increased stability. By projectin
the instability regions onto the (k,u) plane we were able to
show ~at least for the specific model considered here! that
p-centered bands of stability arise for sufficiently largek and
g. We have thus identified all the trends of behavior in t
two-oscillator model as each of the parameters is varied

Our most interesting insights arise from a comparison
the two-oscillator results with the mean-field model@16#. As
noted above, the ‘‘usual’’ instabilities of the mean fie
model are exactly our ‘‘r 8 instabilities.’’ The interesting re-
sult is that the ‘‘collective’’ instabilities already appear in th
n
.

03660
es
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e

f

two-oscillator model withu5p. This statement is based o
the great similarity of the stability boundaries of the me
field and two-oscillator systems, especially with increas
coupling, and the specific features of the oscillator trajec
ries that typify the motions in each of these unstable regim
It is perhaps surprising that a two-oscillator model can c
ture so much of the mean-field collective behavior, and s
gests that collective resonance in the latter may be domin
by phases quenched aroundp.
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